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Chapter 7 

Elastic Network Models For Biomolecular Dynamics: Theory and 

Application to Membrane Proteins and Viruses 

Timothy R. Lezon, Indira H. Shrivastava, Zheng Yang and Ivet Bahar∗ 

Department of Computational Biology, School of Medicine,  

University of Pittsburgh, Suite 3064, Biomedical Science Tower 3,  

3051 Fifth Ave., Pittsburgh, PA 15213 

7.1.   Introduction  

Elastic network models (ENMs) have over the last decade enjoyed considerable 
success in the study of macromolecular dynamics.  These models have been used 
to predict the global dynamics of a variety of proteins and protein complexes, 
ranging in size from single enzymes to macromolecular machines (Keskin et al. 
2002), ribosomes (Tama et al. 2003, Wang et al. 2004) and viral capsids (Tama 
& Brooks, 2002, Tama & Brooks, 2005, Rader et al. 2005). They have provided 
insights into a wide range of protein behaviors, such as mechanisms of allosteric 
regulation (Ming & Wall, 2005, Bahar et al. 2007, Chennubhotla et al. 2008), 
protein-protein binding (Tobi and Bahar 2005), anisotropic response to uniaxial 
tension and unfolding (Eyal and Bahar, 2008, Sulkowska et al. 2008), co-
localization of catalytic sites and key mechanical sites (e.g., hinges) (Yang & 
Bahar 2005), interactions at the binding sites (Ming & Wall, 2006), and 
energetics (Miller et al. 2008), to name a few.  ENMs allow the global motions of 
a molecule to be quickly calculated, making them an ideal complement to 
conventional molecular dynamics (MD) simulations.  Increasingly, variants of 
ENMs are being applied to non-equilibrium situations, such as the prediction of 
transition pathways between functional states separated by low energy barriers 
(Zheng et al. 2007) or driving MD simulations (Isin et al. 2008).  

At its core, the ENM provides a simplified representation of the potential 
energy function of a system, in this case a macromolecule or macromolecular 
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assembly, near equilibrium.  The nodes of the network are the building blocks, 
such as atoms, nucleotides or amino acids, from which the system is composed 
(Fig. 7.1).  Each node is typically represented as a point particle in three 
dimensions (3D), and the edges of the network, or the springs joining the nodes, 
represent harmonic restraints on displacements from the equilibrium structure.  
Thus, the ENM provides an intuitive and quantitative description of behavior 
near equilibrium:  The starting conformation resides at the bottom of a harmonic 
well, and any deviations from equilibrium will increase the energy and result in a 
linear net force directed toward restoring the system to its lowest energy state.  

 

 
Fig. 7.1.  From protein assemblies to network models. (a) External view of the intact viral capsid 
HK97 colored by chain, generated using the PDB file 2FT1 deposited by Johnson and coworkers 
(Gan et al. 2006). The capsid consists of 420 identical proteins arranged into 12 pentamers and              
60 hexamers. (b) One asymmetric unit from panel (a) is enlarged. Each chain is in a distinctive 
color, indicating a possible scheme for rigid building blocks. (c) One asymmetric unit shown as 
secondary structures, in the same viewpoint and color scheme of panel (b). (d) A cartoon of the 
ENM in which the nodes are Cα atoms (spherical dots) and the edges represent the springs (or 
elastic couplings) connecting pairs of nodes located within a distance of rc.   
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The harmonic approximation is ubiquitous in physics, and similar models 

have been used for calculating elastic properties of bulk polymers and classical 

lattice vibrations in crystals (see, for example, Marder 2000).  Proteins, on the 

other hand, are small and somewhat flexible, and it was not until Tirion (1996) 

demonstrated that a harmonic potential faithfully captures the global dynamics of 

proteins that ENMs saw wide use in theoretical investigations of protein 

dynamics.  Subsequent studies reinforced this observation, bestowing the ENM 

with particular relevance to proteins (Cui & Bahar 2006).  It is well established 

that a relationship exists between protein structure and protein function.  Here we 

have a simple network model that enables the calculation of global dynamics 

from structure alone, suggesting that protein dynamics is intermediate to 

structure and function, and ENMs provide an easily employable conduit between 

structure and dynamics. 

An attractive feature of ENMs that keeps them in continuous use is that they 

provide a wealth of information at low computational cost.  Construction of the 

EN is a matter of straightforwardly defining and linking nodes provided that 

information on structure, or simply on inter-residue contact topology, is 

available.  The standard technique for determining dynamics or statistical 

distributions from an ENM is to conduct a mode decomposition using spectral 

graph theory and methods (e.g., Gaussian Network Model (GNM) (Bahar et al. 

1997, Bahar et al. 1998) inspired by polymer network theory (Flory, 1976)) or a 

normal mode analysis (NMA) with uniform harmonic potentials, both of which 

provide analytical solutions to the equations of motion, bypassing the need to 

sample conformation space.  Although NMA can also be applied to potentials 

derived from more detailed force fields, such calculations either require an initial 

energy minimization that inevitably distorts the input conformation, or else they 

risk producing energetically unstable solutions.  ENMs, on the other hand, can 

take any conformation as input and guarantee that it resides at a minimum of the 

potential and therefore has physical motions.  Furthermore, the few parameters 

used in ENMs can be easily adjusted as seen fit, giving ENMs uncommon 

adaptability.  There are, however, some limitations to ENMs as predictive tools.  

Although ENMs robustly predict collective global motions, they do not fare as 

well in providing reliable descriptions of local motions.  Also, the harmonic 

approximation requires a potential minimum, limiting the utility of ENMs for 

modeling non-equilibrium dynamics.  A corollary of this second point is that 

only motions in the neighborhood of the global energy minimum can be 

accurately predicted by the ENMs, and one must be careful when interpreting the 

results from the model not to exceed the limits of the model. 
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Here we will outline the theory behind the ENM and some of its extensions, 

and then we will present some recent applications. We will focus on two groups 

of proteins, membrane proteins and viral capsids. Membrane proteins form one 

of the most ubiquitous classes of proteins, accounting for more than 25% of the 

proteins in most genomes (Wallin and von Heijne, 1998). Their functions cover a 

wide range of spectrum from transport of metabolites in prokaryotes to regulating 

and maintaining intra-cellular communications in eukaryotes by transporting 

ions.  In mammalians, these proteins are responsible for maintaining the 

electrochemical gradients across cell-membrane, which is vital for efficient 

functioning of the central nervous system. Malfunctioning of membrane proteins 

leads to potentially fatal diseases, such as Alzheimer’s, multiple sclereosis and 

arrhythmia (Ashcroft, 2000). Membrane proteins indeed constitute a large 

fraction of proteins currently targeted by approved drugs. Understanding the 

general principles of their structural dynamics and thereby mechanisms of 

function is thus essential in the rational design of therapeutics that target 

membrane proteins. By way of applications to a number of membrane proteins, 

we will illustrate in the present chapter how ENM approaches can provide 

insights into gating and/or signal transduction mechanisms.  

Viruses constitute another group of proteins that are difficult to examine by 

all-atom simulations (due to their sizes of the order of Megadaltons), but are 

amenable to ENM analyses. The viral capsids in particular possess solid-like 

behavior, and can be well represented by elastic network models and their 

material properties. We will show how ENMs can greatly enhance our 

understanding of the complex dynamics of viral capsids, and open the way to 

simple descriptions in terms of measurable material properties. In summary, both 

groups of applications illustrate the utility of ENM approaches in providing 

simple descriptions of highly complex structures’ dynamics, and gaining insights 

into potential mechanisms of biomolecular functions. 

7.2.   Theory and Assumptions  

7.2.1.   Statistical mechanical foundations 

Potential energy. The elastic network model theory follows the same formalism 

that is commonly presented for studying small oscillations (Goldstein 1953).  

Here the physical system is a molecule or molecular assembly consisting of N 

constituent particles, where each particle may be an atom, a residue, or some 

other structural element acting as a node in the network.  The changes in 



 Network Models for Protein Dynamics 

 
133

generalized coordinates are defined by the vector q = (q1, …, qn)
T of 

displacements from equilibrium.  Typically the three Cartesian coordinates of 
each node are considered separately, giving q a total of 3N components (notable 
exceptions include the GNM, in which q has N components, and highly 
symmetric systems, such as viral capsids, for which symmetry can be exploited 
to reduce the dimensionality of q).  Near the equilibrium structure, the potential 
energy can be expanded as a power series in q as 

 
2
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( ) (0)

2
q i i ji ij

i i j
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The first term of the above expression is a constant that may be set to zero, and 
the second term is identically zero at a potential minimum.  To second order, the 
potential is a sum of pairwise potentials 
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2
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where U is the matrix of second derivatives of the potential with respect to the 
generalized coordinates.  It should be noted that U is symmetric and nonnegative 
definite. 
 
Equation of motion. The kinetic energy can similarly be written in compact 
form as 

 
1
2

q MqT
T = ɺ ɺ , (7.5) 

where the elements of the diagonal matrix M are the masses of the nodes andqɺ is 
the time derivative of q.  The equations of motion of the system are 

 = 0Mq + Uqɺɺ .                  (7.6) 

Here the double dot denotes the second derivative with respect to time.  
 
Analytical solution. We solve Eq. (7.6) by transforming to mass-weighted 
coordinates, r = M1/2

q, K = M–1/2 
UM

–1/2, which yield 

 –r =  Krɺɺ ,  (7.7) 



T. R. Lezon et al. 

 
134

Note that the potential energy (Eq. (7.4)) can be expressed in terms of the               
mass-weighted coordinates and the mass-weighted stiffness matrix K as V(r) =    
½ rT Kr.  The solution to Eq. (7.7) is  

 ( )r a i t
t e

ω−= . (7.8) 

From Eq. (7.7) and Eq. (7.8), we find that the coefficients a solve the eigenvalue 
equation Ka = λa, where a is a vector of displacements along a normal mode of 
vibration, and the eigenvalue, λ, is the square of the normal mode frequency ω.  

In most cases, K is not invertible, but has a well-defined number of 
eigenvalues that are identically zero.  This occurs because the potential energy 
only depends on internal degrees of freedom and places no energetic restrictions 
on rigid-body rotations and translations.  With this in mind, the inverse of K, 
when required, is replaced by the pseudo-inverse, defined as 

 1
0

v v
K

k

T
k k

k
λ λ

−
≠

=∑ ,  (7.9) 

where λk are the nonzero eigenvalues of K, and vk are their associated 
eigenvectors. 
 
ENM partition function. The system’s partition function can be calculated by 
integrating the potential over all possible changes in structure:     

 
1

exp
2

r Krn T

B

Z d r
k T

   = −    
∫  (7.10) 

 / 2 1 1/2(2 ) [det( )]Kn
Bk Tπ −= ,     (7.11) 

where kB is the Boltzmann constant and T is the absolute temperature. As                
det (K–1) is simply the product of the reciprocal nonzero eigenvalues of K, the 
lowest frequency modes contribute most to the partition function.  These modes 
are also of highest interest when seeking to determine the most probable global 
fluctuations of a molecule.  Indeed, the low-frequency, or ‘slow’, modes of an 
ENM are robust to variations in network topology, the level of resolution adopted 
in describing the network (see for example Doruker et al. 2002) and the force 
field adopted in NMA, and they reflect the intrinsically accessible motions that 
are endowed upon the molecule by its structure. 
 
Mean-square fluctuations and cross-correlations. Expectation values for 
dynamical variables predicted by the ENM can be directly compared to 
experimental measurements.  X-ray temperature factors (B-factors) provide a 
measure of the mean-square fluctuations of individual atoms.  Similarly, an 
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ensemble of NMR structures can be used to calculate the correlations between 
the displacements of atoms.  The correlations between node fluctuations in the 
ENM are given by 

 
1 1
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   〈 〉= −    

∫   (7.12) 

 1( )KB ijk T
−= , (7.13) 

and from Eq. (7.9)  it is clear that the most significant contributions to the inter-
residue correlations are also from the slowest modes.   

7.2.2.   Anisotropic network models 

The most common ENMs are anisotropic network models (ANM) (Doruker, 
Atilgan and Bahar 2000; Atilgan et al. 2001; Tama and Sanejouand 2001) that 
use the 3N mass-weighted coordinates of the nodes as generalized coordinates: 
r = (∆x1, ∆y1, ∆z1, …, ∆xN, ∆yN, ∆zN)T, where ∆xi = xi – xi

0 is the x-component of 
the displacement of node i from its equilibrium position, ri

0. In this case            
the interaction matrix K is the 3N × 3N Hessian matrix, H, of mixed second 
derivatives of the potential with respect to the coordinates of the residues.  The 
Hessian might be thought of as an N × N matrix of 3 × 3 submatrices, each of 
which describes the energetic contribution from the interaction of two nodes.  
The elements of H can be calculated from the potential energy, 

 0 21
( )

2 ij ij ijij
V R Rγ= −∑ ,  (7.14) 

where γij is the spring constant between nodes i and j, Rij is their distance, and 0
ijR  

is their equilibrium distance.  The second derivatives of the potential function 
have the general form 
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where xi and yj are the x- and y-coordinates of nodes i and j, respectively.  Using 
the notation xij = (xj – xi), and similarly for yij and zij, the off-diagonal super-
elements of H are 
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and the diagonal super-elements satisfy 

 
;

H Hii ijj j i≠
=∑ .     (7.17) 

Diagonalization of H yields 3N – 6 normal modes, each of which has a 3-vector 
component for every node.  The remaining 6 modes have zero eigenvalue and 
correspond to rigid-body rotations and translations of the system. 

The spring constants γij are the only adjustable parameters in this model, and a 
variety of methods are used to select their values.  Pairwise interactions are 
predominantly local, and a common practice is to assign a uniform spring 
constant, γij = γ, to all pairs of nodes separated by less than some cutoff distance, 
and γij = 0 for all others.  It has been found empirically (Eyal et al. 2006) that 
when the nodes are taken to be the α-carbons of a protein, a cutoff distance of 
about 15Å results in residue mean-square fluctuations that correlate well with 
experimental B-factors.  An alternative approach (Hinsen, 1998) that agrees 
comparably with experiments is to assign spring constants that decay with 
distance.  Recent studies (Kondrashov, Cui and Phillips 2006) show that the 
adoption of stiffer force constants for the springs that connect first neighbors 
along the sequence further enhances the correlation with B-factors.   

7.2.3.   Gaussian network model 

A simplification of the above-described model is the Gaussian network model 
(GNM) (Bahar et al., 1997).  This model uses the assumptions that node 
fluctuations are isotropic and Gaussian to reduce the interaction matrix from a 
3N × 3N Hessian to an N × N Kirchhoff matrix.  Interestingly, this model often 
agrees better with experimental data than does its anisotropic counterpart, 
because the underlying potential penalizes the vectorial changes 0

R R Rij ij ij∆ = −  
in internode distances (as opposed to penalizing the changes in the magnitudes 

0| | | |R Rij ij− only, as in the ANM; see Eq. (7.14)). 
The inherent assumption of vibrational isotropy allows GNM to predict the 

size of motions and their cross-correlations, but not their directions. It also 
predicts the displacements along normal coordinates (e.g., slow modes) and 
permits us to define the domains engaged in concerted motions in the global 
modes, but not their mechanism/direction of concerted rearrangements. Note that 
the GNM uses only a single parameter, the elastic constant γ that defines the 
interactions between nodes that are separated by a distance less than a cutoff 
distance, rc.  When applied to proteins at the residue level, a value of rc between 
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6.5Å and 7.5Å, corresponding to the radius of the first coordination shell, is 
typically selected for use in GNM. 

The potential in Eq. (7.14) is a sum over pairwise potentials, each of which 
depends on the difference between the instantaneous distance between two nodes 
and their equilibrium separation.  By assuming isotropic fluctuations, we can 
separate the spatial components of each node’s motion, resulting in the GNM 
potential 

    0 01
[( ) ( )]

2GNM ij ij ij ijij ij
V R R R Rγ= − ⋅ −∑    (7.18) 
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In the preceding lines we use the notation 0 ,ij ij ijx x x∆ = − and similarly for ∆yij 

and ∆zij. Likewise, we used the notation ∆x = (∆x1, ∆x2, ∆x3, …, ∆xN)T and 
similar expressions for ∆y and ∆z, where ∆xi is the x-component of the vector ∆ri 
describing the fluctuation in the position of node i.  The Kirchhoff adjacency 
matrix, ΓΓΓΓ, has elements 
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The equations of motion separate into three identical equations, one for each 
spatial coordinate, and the normal modes are obtained by diagonalizing ΓΓΓΓ.  The 
assumption of isotropy essentially reduces the system to one dimension, and ΓΓΓΓ 
has N – 1 non-zero eigenvalues.  Correlations between nodes can be found as 
before with  

 13 ( )i j B ijr r k T∆ ∆ Γ−= ,    (7.23) 

which is identical to Eq. (7.13) with ΓΓΓΓ taking the place of K and a factor of three 
from the summation over spatial coordinates. 
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7.2.4.   Rigid block models 

One of the advantages of  ENMs over more detailed force fields and simulations 
is their ability to produce analytical results with a coarse-grained model.  One can 
quickly calculate the dynamics of a moderately large macromolecule simply by 
building and diagonalizing its Hessian matrix, an O(N3) computation.  
Occasionally, though, the memory requirements of the calculation overwhelm 
contemporary computers, and further coarse-graining is necessary.  For example, 
if one wishes to consider the motion of side chains, a Hessian based on α-carbon 
coordinates alone is insufficient, and an ENM using all atoms must be used 
instead.  Such refinement increases the system size approximately tenfold, 
possibly beyond the tolerance of available computational resources.  Similarly, 
very large molecular assemblies such as viral capsids can contain upwards of 105 
residues, and their Hessian matrices cannot be easily handled by conventional 
computing resources.  

One way to overcome the problem of excessive system size is to bundle 
several elements of the physical system into a single node.  This method 
faithfully reproduces the global dynamics of the system (Doruker et al. 2000), 
but does not produce detailed motions for all of the original nodes.  Mixed 
models (Kurkcuoglu et al. 2003) that rely on multiple levels of coarse-graining 
can provide detailed results only for specific regions of interest.  A good method 
for surmounting the problem of finding the normal modes of very large systems 
is the rotations and translations of blocks (RTB) (Tama et al. 2000), also called 
block normal mode (BNM) (Li and Cui, 2002) method.  This method assumes 
that the system is constructed of nb rigid blocks, and that the normal modes of the 
system can be expressed as rigid body rotations and translations of its constituent 
blocks.  Each block has 6 degrees of freedom, and the approximation reduces the 
size of the system from 3N to 6nb.  

Consider a system of N nodes that can be collected into nb < N rigid blocks 
connected by elastic springs. As before, the generalized mass-weighted 
coordinates form the 3N-vector r, and the system’s Hessian, H, is calculated 
from the topology of the elastic network.  We define the 3N × 6nb projection 
matrix, P, from the 3N-dimensional space of all nodes into the 6nb-dimensional 
space of rotations and translations of the rigid blocks.   The relationship between 
linear motion of a rigid body and the motion of its constituent components is 
captured by the conservation of linear momentum in mass-weighted coordinates:  

 r rCM k kk
M m=∑ɺ ɺ ,         (7.24) 
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where the summation is over all nodes in the rigid block, mk and rk are the mass 
and position of node k, and M = Σk mk and rCM are the mass of the block and 
position of its center of mass.  Note that Eq. (7.24) holds not only for velocities, 
but also for positions and higher time derivatives.  The matrix elements 
projecting from the full 3N-dimensional space to translations in the block space 
are  

 
( )

( )
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CM k
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m
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µ
µν
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δ
∂

=
∂

ɺ

ɺ
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where µ and ν indicate x-, y- or z-components of the vector (or tensor) enclosed 
in parentheses, and δµν is the Kronecker delta function.  Similarly, angular 
momentum conservation gives 

 1/2 ( )I r rk k kk
mθ= ×∑ɺ ɺ , (7.26) 

where I and θ are the block’s moment of inertia tensor (the elements of which are 
given by Iµα ≡ Σk mk (rk

2δµα – (rk)µ (rk)α) and angular displacement vector.  The 
components of θɺ are 

 1/2( ) ( )I r rk k kk
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θ −= ×∑ ∑ɺ ɺ   (7.27) 
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where εαβν is the permutation symbol (ε123 = ε231 = ε312 = 1; ε213 = ε 321 = ε 132 =           
–1; otherwise εαβν = 0), also known as Levi-Civita symbol.  Differentiating the 
components of θɺ with respect to the components of ,rkɺ the matrix elements 
projecting from the full 3N-dimensional space to rotations in the block space are 
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Using Eqs. (25) and (29) and the notation of Li and Cui (2002), the elements of 
the 3N × 6nb projection matrix P are 
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    (30) 

where J is the rigid block index, rJ
0 is the position vector of the mass center of 

block J, j is the node index, µ designates the rigid block translation (1 ≤ µ ≤ 3) or 
rotation (4 ≤ µ ≤ 6), and ν is the node displacement component (1 ≤ ν ≤ 3).  The 



T. R. Lezon et al. 

 
140

Hessian is projected into the space of rigid blocks with the transformation 
HBLK = P

T
HP, HBLK is diagonalized with VT

BLKHVBLK = ΛBLK, and the resulting 
eigenvectors are projected back into the full 3N-dimensional space with the 
inverse projection V = PT

VBLK. 
An example application of the RTB/BNM formalism is to virus maturation.   

Tama and Brooks (2005) modeled viral capsids of different sizes and symmetries 
using an ENM in which each capsomer was taken to be a rigid block.  Their 
analysis showed that the conformational changes that occur during viral 
maturation can be largely accounted for with only a few icosahedrally symmetric 
slow modes.  Another example application is to molecular motors.  Li and Cui 
(2004) found that the conformational changes that occur in myosin and the 
calcium transporter Ca2+-ATPase  are dominated by a small number of slow 
modes, suggesting that Brownian motions have an essential role in the function 
of molecular motors.    

7.2.5.   Treatment of perturbations 

It is often interesting to compare the global dynamics of a system in the absence 
and presence of some environmental perturbation applied at a given position, 
such as ligand binding.  In such cases the perturbation takes the form of 
additional nodes, and the Hessian is calculated for the extended system, including 
these additional nodes.  Comparing the normal modes of the original system to 
those of the perturbed system is not straightforward:  Including the perturbation 
provides additional degrees of freedom, so the normal modes of the perturbed 
system are not necessarily orthogonal when projected into the space of the 
unperturbed system.  It is useful to have an effective Hessian that will account for 
the influence of the perturbation without modifying the size of the system.  This 
can be calculated as follows. 

The state vector for an N node system is r = (r1, …, r3N)T, and the state vector 
for the same system in the presence of a perturbation, e = (e1, …, e3n)

T by a 
system of n nodes is r′ = (s1, …, s3N, e1, …, e3n)

T = (rT   eT)T, where the first 3N 
components refer to the original system, and the last 3n to the environment or 
perturbing molecule.  As demonstrated by Ming and Wall (2005), and by Zheng 
and Brooks (2005), the Hessian of a molecule within a specific environment can 
be decomposed as follows: 

 
H H

H H

ss se

T
se ee

   =    

H ,     (7.31) 
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where Hss contains contributions from interactions of the original system with 
itself, Hee accounts for interactions of the environment with itself, and Hse 
contains interactions between the system and its environment.  Note that Hss is 
not simply the unperturbed Hessian, but has different diagonal super-elements 
due to environmental contributions.  The potential energy can be written as 

 
1

( )
2

r rT
V ′ ′= H                      (7.32) 
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e.  At equilibrium, / 0iV e∂ ∂ = for all environmental 

nodes, giving 

 0 H r H ees es= + ,      (7.34) 

which yields 

 1e H H ree es
−=− .                (7.35) 

Substitution of this expression into Eq. (7.33) permits us to write the  potential 
energy in terms of the 3N components of r as 

 
1
2

r HrT
V =  (7.36) 

where H is a pseudo-Hessian with the same dimensionality as the unperturbed 
Hessian, but which includes the environmental effects: 

 1H H H H HT
ss se ee se

−= − .        (7.37) 

Diagonalizing H leads to the normal modes in the presence of the perturbation, 
and these can be directly compared to the modes of unperturbed system.  This 
approach has been used to examine conformational changes in myosin and 
kinesin nucleotide-binding pockets.  Zheng and Brooks (2005) employed a model 
in which the binding pockets of motor proteins constituted the system, and the 
remainder of the protein made up its environment.  They showed that the 
dynamics relevant to the myosin binding pocket are coupled to its global modes, 
in agreement with hypothesized pathways between actin binding and force 
generation.  Ming and Wall (2006) used this method to demonstrate that substrate 
allosteric proteins usually bind their substrates at sites that induce significant 
perturbation in the collective dynamics.   
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7.2.6.   Langevin dynamics 

The equations of motion that are most commonly adopted in ENM studies do not 
generally account for frictional forces (see Eq. (7.6)).  Nonetheless, biomolecules 
exist in viscous environment, and viscous drag may alter their normal modes of 
motion.  It is therefore useful to have a technique for calculating normal modes 
of motion in the presence of damping forces.  Perhaps the simplest way to 
introduce viscous drag is through the Langevin equation: 

 ( )tMq Uq qɺɺ ɺζ=− − +ξξξξ .      (7.38) 

Here ζ is a velocity-dependent damping term and ξ(t) is a time-dependent vector 
of random forces, also called white noise, which satisfies the conditions 

  ( ) 0i tξ =  (7.39) 

 ( ) ( ) 2 ( )i j ij Bt t t t k Tξ ξ ζ δ′ ′= − ,  (7.40) 

In mass-weighted coordinates, Eq. (7.38) becomes 

 ( )r Kr Fr R t=− − +ɺɺ ɺ ,  (7.41) 

with K as defined earlier, F = M–1/2ζ M–1/2 is the mass-weighted friction matrix, 
and R = M–1/2ξξξξ.  

Defining the 6N × 6N matrix  (Miller et al. 2008) 

 
0

A
K F

I  =  − − 
,   (7.42) 

in which I is the 3N × 3N identity matrix, Eq. (7.41) may be re-written as 
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r r 0
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r r R t
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ɺ

ɺɺ ɺ
, (7.43) 

and the normal modes can be solved analytically by diagonalizing A.  The first 
3N components of the eigenvectors of A provide the displacements along the 
normal modes, and the last 3N components correspond to the mode velocities.  
The eigenvalues of A are complex; their imaginary parts are the oscillatory 
frequencies of the modes, and their real parts are the exponential decay constants 
of their amplitudes.  This approach has been used by Miller et al. (2008) to 
estimate the fractional free energy loss in the myosin power stroke. 

In the limit of strong friction, all of the modes are over-damped and the 
system obeys Brownian dynamics.  Hinsen et al. (2000) demonstrated that the 
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normal modes in this limit are found by diagonalizing the friction-weighted force 
constant matrix, 

 1/2 1/2Û Uζ ζ− −

= .  (7.44) 

In such a case, the system does not oscillate, but displacements from the 
equilibrium conformation will relax along the eigenvectors of Û with relaxation 
constants given by the corresponding eigenvalues.  This technique has been used 
to calculate scattering functions of proteins, and to investigate the sources behind 
damping in global protein motions (Hinsen et al. 2000).  

7.3.   Applications  

7.3.1.   Membrane proteins 

Membrane proteins are typically composed of three domains: an extracellular 
(EC) domain exposed to the periplasm, an intracellular/cytoplasmic (IC or CP) 
domain buried in the cytoplasm, and a transmembrane (TM) domain embedded 
in the lipid bilayer.  Some membrane proteins, known as receptors, are involved 
in signal transmission via recognition and binding of substrate/ligand to the EC 
domain, which triggers conformational changes in the CP domain. The allosteric 
coupling between different domains or the concerted motions, permit the              
protein to recognize, bind or translocate substrates. Other membrane proteins 
serve as ion channels or substrate transport. Permeations of ions and/or substrates 
thus require collective relaxation mechanism or cooperative motions, which are 
usually amenable to ENMs. Here we focus on recent progress made in 
delineating the dynamics of four groups of membrane proteins, potassium 
channels, acetylcholine receptors, rhodopsin and mechanosensitive channels 
using ENM-based methods.  

Potassium channels: Common gating mechanism observed in different 

potassium channels.   The TM domain of K+ channels is composed of a bundle 
of eight α−helices contributed by four identical monomers (Fig. 7.2). At the 
center of these helices is a narrow selectivity filter (towards the EC region), 
followed by a large cavity in the middle, and a long gating region, also called 
pore, that connects to the CP region (Fig. 7.3a).  MD studies have provided us 
with insights in to the mechanism of function at the selectivity filter, including 
the preferential selectivity of potassium over sodium (Shrivastava and Sansom, 
2000, Shrivastava et al. 2002, Bernèche and Roux, 2000) and the free energy 
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Fig. 7.2.  Sequence and structure of the pore region of five structurally known potassium 

channels. (a) Alignment of the pore region sequences.  The regions corresponding to the helices 
TM1 and TM2 and the selectivity filter are indicated by yellow, blue and red blocks, respectively.  
The alignment was performed using ClustalW (Thompson et al., 1994).   Fully or highly conserved 
regions are shown in bold.  The signature motif GYG at the selectivity filter, is highlighted and 
shaded in red (b) Structural comparison of the pore forming regions of the K+ channels aligned in 
panel a. These are all tetrameric structures, the monomers of which contain either 2 TM helices 
(KcsA, MthK and KirBac) colored yellow (TM1) and blue (TM2), or 6 TM helices (KvAP and 
Shaker) denoted as S1-S6. Only the pore forming helices S5 and S6, equivalent to TM1 and TM2, 
are displayed here, along with the selectivity filter, (which is colored red in all the structures).  

profile along the selectivity filter (Bernèche and Roux, 2003). Yet, a fundamental 
question that remained unanswered until recently has been the mechanism of 
gating, i.e., the conformational events that allow for the transfer of ions from the 
central cavity to the CP region through the channel-pore. In the X-ray structures, 
the radius of the pore is too small to let the ions through. The question was: how 
does the narrow pore open up to permit the permeation of potassium ions?   

Toward gaining an understanding of the potential mechanism of pore 
opening, we recently examined five K+ channels, KcsA, KirBac, MthK, KvAP 
and Shaker (Shrivastava & Bahar, 2006). Figure 7.2a shows a comparison of the 
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Fig. 7.3.  Mobilities in global modes shown by color-coded diagrams for KcsA.  (a)  The different 
regions of the protein are indicated, namely, the inner and outer helix (TM1 and TM2 respectively), 
the putative intracellular gate, the selectivity filter and the turret region. (b) The slowest global 
mode (mode type I), which is two fold degenerate (top), is an opening/stretching motion, with the 
turrets opening and closing above the selectivity filter. The second lowest frequency mode (mode 
type II) (bottom), corresponds to a twisting/torsion motion, leading to a widening of the pore, 
shown in the next panel. (c) Pore-radius profiles (top panel) as a function of the position along the 
cylindrical (Z-) axis.  Bottom panel shows a solid-sphere representation of the inner surface of the 
channel at the pore region for the crystal structure (left), for the model of the open form (right).  
The color code for the solid-sphere representation of the pore region is: red, pore radius < 1.15 Å; 
green, 1.15 Å < radius < 2.30 Å; and blue, radius > 2.30 Å. The pore radius profiles were generated 
using HOLE (Smart et al., 1993).  In the inset of panel (c) is the backbone of the crystal structure 
(blue) superimposed onto the model of the open form (red). Two monomers have been deleted for 
clarity. 

 

sequences and pore region structures of these five channels. The observed 
structural similarities in the pore-forming region suggested a common gating 
mechanism, which was indeed verified by GNM/ANM calculations.  The 
equilibrium dynamics of these five channels were found to obey similar patterns 
on a global scale.   Mainly, two types of highly cooperative motions were 
identified at the low frequency end of the mode spectrum, shared by all five 
structures: The first (referred to as type I) is an alternating expansion/contraction 
of the EC and/or CP via anti-correlated fluctuations of oppositely located pairs of 



T. R. Lezon et al. 

 
146

monomers (Fig. 7.3a).  The second (type II) is global torsion of the helical bundle 
similar to a cork-screw mechanism, with the net result of inducing an 
enlargement of the pore region (Figs. 7.3b and 7.3c).   The change in the relative 
spacing of the TM2 helices (Shrivastava & Bahar, 2006) was observed to be in 
accord with the models based on site-directed spin labeling and EPR 
spectroscopy data (Perozo et al. 1999) and experimental structures of the open 
form. 

This study reinforces the observation that proteins have an inherent ability to 
undergo conformational changes required for their biological function (Ma, 2005, 
Bahar et al. 2007, Tama and Sanejouand, 2001, Xu et al. 2003).  Computational 
studies performed by Sansom and coworkers for investigating the dynamics                 
of inward rectifying potassium channels (Kirs) (Haider et al. 2005) further 
indicated a good agreement (correlation coefficient of 0.87) between the mean-
square fluctuations of  Kir3.1 residues obtained from molecular dynamics (MD) 
simulations and those predicted by ANM. The lowest frequency mode from 
ANM indicated an asymmetric dimer-of-dimers motion, which is also in 
agreement with that inferred from MD simulations, suggesting that this 
mechanism of motion is a robust property of the structure. (Sansom et al. 2005).  
A good correlation was also reported more recently between ENM results                 
and site-directed mutagenesis experiments for KcsA and Mthk (Haliloglu and 
Ben-Tal, 2008).  
 
nAcetyl Choline Receptor (nAChR): Gating via global twist of the quaternary 

structure. As a member of the receptor family of membrane proteins, this            
homo- or hetero-pentamer switches between ion-permeable and –impermeable 
conformations upon binding or releasing its neurotransmitter substrate, 
acetylcholine (ACh). The ACh binding site is located at the boundary between 
the subunits in the EC region.  Binding of ACh promotes a transient opening of 
the channel.  Several models have been proposed for the structural transition 
mediating the signal transmission (Changeux and Edelstein, 1998; Taly et al. 
2005; Liu et al. 2008, Szarecka et al. 2007).  Normal mode analysis on the 
complete structure revealed a concerted symmetric quaternary twist motion (Taly 
et al. 2005), with the EC and IC domains rotating in opposite directions resulting 
in a wide opening of the pore, compatible with experimental observations.   
GNM/ANM analyses (Szarecka et al. 2007) of structural models based on cryo-
electron microscopy data (Unwin, 2005) also revealed two types of quasi-
symmetric twisting motions: Type I inducing a twisting of ligand binding domain 
(LBD) in opposite direction to that of TM and IC domains; and Type II where the 
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central TM domain undergoes counter-rotation with respect to the EC and CP 
domains (Figs. 7.4a and 7.4c).  Both motions induce an increase in the pore 
diameter (Figs. 7.4b and 7.4d).  
 
 

 
Fig. 7.4.  Quasisymmetric twisting motion of heteropentameric nAChR. GNM mean-square (MS) 
fluctuations  of the global mode types I and II are shown, mapped onto a ribbon diagram of the 
protein. The fluctuation values are color-coded on the nACHr structure (red:high, green:moderate, 
blue:low).  The black arrows indicate the phases of twisting directions from the correlated ANM 
modes.  The TM2 domains from the models of open-pore structures (magenta) calculated from 
ANM eigenvectors and eigenvalues are compared with the starting close-pore structure (gray) for 
type I (c) and type II (d) twists. Note the widening of the pore as a result of the twists (Figure 

adapted from Szarecka et al. 2007).  
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Fig. 7.5.  Dynamics of rhodopsin predicted by the GNM and ANM.  (a) Experimental(black), 
GNM (red) and ANM (dashed blue) predicted thermal B-factors. (b) Distribution of square 
displacements of residues predicted by GNM (blue) and ANM (black). The non-TM regions exhibit 
higher mobilities, in general. ANM yields two additional minima: Pro180 and Cys187 near the EC 
entrance to the chromophore binding pocket. (c) The global mode eigenvector calculated with the 
GNM, indicating relative motions of different regions of the proteins along the principal mode 
coordinate. Positive and negative regions delineate structural blocks subject to concerted motions.  
The locations of the helices (1-8) are indicated on the upper abscissa and distinguished by gray 
bands. (d) Ribbon diagram of rhodopsin color-coded according to the relative motions in (b) in 
order of increasing mobilities: blue (lowest mobility), cyan, green, yellow, orange, red (highest 
mobility). Side chains are shown for the seven GNM hinges labeled in (b) and 11-cis-retinal is 
shown in light blue space-filling representation.   

 

Rhodopsin: An activation mechanism coupling the EC and CP domains. As the 
only structurally determined member of the G-protein coupled receptors (GPCR) 
family, rhodopsin has been widely studied by both experimental and 
computational techniques.  Capture of the substrate G-protein triggers a highly 
cooperative conformational change in rhodopsin accompanied by the 
isomerization of its chromophore (11-cis-retinal) at the TM region. The 
chromophore binding pocket is a highly packed region. The perturbation of the 
structure at this region drives the propagation of the conformational change via 
cooperative rearrangements of TM helices to the cytoplasmic (CP) domain, to 
induce the active state of rhodopsin, metarhodopsin II (Meta-II) (Isin et al. 2006).  
The application of GNM to two dark state structures of rhodopsin 1L9H (Okada 
et al. 2002) and 1U19A(Okada et al. 2004) yielded the B-factor profile 
(Fig. 7.5A) in close agreement with the experimental data (correlation coefficient 
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of 0.837). The loops between helices 3 and 4 and the C-terminus are 
distinguished by their enhanced mobilities.  

A clearer picture of the relative mobilities of the different structural 
components in the long-time regime is obtained upon examination of the slowest 
mode profile obtained by GNM in Fig. 7.5 (panels B and C).  The slowest mode 
divides the structure into two regions subject to anticorrelated fluctuations. 
Mainly, the positive and negative portions of the mode 1 eigenvector plotted in 
Fig. 7.5C define the two anticorrelated regions. The cross-over regions between 
them form the minima in the square displacements profile shown in Fig. 7.5B. 
The corresponding residues occupy central positions in the TM helices 
(Fig. 7.5D). Since they also lie at the interface between the two anticorrelated 
regions of the molecule, these residues play an important role in transmitting 
conformational perturbations. Many residues lying in this critical region (e.g., 
D83, V162, F261) participate in the retinal binding pocket, and efficiently 
propagate local conformational changes between the CP and extracellular (EC) 
ends of the molecule (Isin et al. 2006). ANM analysis shows that this mode 
essentially drives a global twisting of the TM helices, which results in an overall 
expansion at the two ends. These conformational changes agree well with 
experimental data (Isin et al. 2006).  In particular, the mobility of spin-labeled 
side chains at the buried surfaces of TM helices 1, 2, 3, 6 and 7 were found to 
increase upon isomerization, indicating a reduced packing consistent with the 
expansion of the pore, in accord with ANM results.  
 
Mechanosensitive Channel (MscL): Channel widening upon global twisting 

and torsion.  These proteins act as a “safety-valve” in E. Coli: they open up 
when the osmotic pressure is beyond a certain threshold (Hamill & Martinac, 
2001, Anishkin & Kung, 2005), thus preventing membrane breakdown and                    
cell lysis.  The diameter of the gate region, as inferred from the X-ray structure              
of the closed form (Chang et al. 1998),  is ~2 Å, whereas in the open form it is         
~30-35 Å (Sukharev et al. 1999), suggesting a significant conformational change.  
ENM studies have elucidated the dynamics of this mechanosensitive protein 
(Valadie et al. 2003, Haliloglu & Ben-Tal, 2008).   Two major kinds of motions 
were identified: Type I (Fig. 7.6), a symmetrical motion that corresponds to an 
overall iris-like opening, exhibited by the non-degenerate modes; and Type II, 
which resulted in a global bending/tilting.  Notably, three non-degenerate modes 
(modes 11, 31 and 64) (Valadie et al. 2003) accessible to the closed state can 
alone account for 65% of the conformational change observed between the 
closed and open states, while the first 100 modes describe 76% of the transition. 
As to the opposite change, five non-degenerate modes recover 65% of the 
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conformational change.   Interestingly, in this protein as well, the twisting and 
tilting motions result in widening up of the channel pore. 

Although more than 25% of the human genome is made up of membrane 
proteins (Bond et al. 2007), only ~100 X-ray structures of membrane proteins are 
known to date (White, 2004). Moreover, most of these structures are from 
prokaryotic organisms. Thus insights on mechanics of biological functions of 
these proteins that are made from these structures are vital in understanding the 
functioning of the respective human homologues. In particular, the ‘twist-to-
open’ mechanism instrumental in the gating function of most of the membrane 
proteins discussed here, suggests a common mechanism of pore-opening when 
the pore architecture exhibits a cylindrical symmetry with funnel-like 
organization of a bundle of helices.  

 

 

Fig. 7.6.  Twisting and torsion MscL in the slow-frequency twisting/torsion mode.  The top panel 
illustrates the side view with the protein with a vector representation of the amplitude and direction 
of motion predicted by the ANM (see also Valadie et al. 2003). The lengths of the arrows scale 
with the amplitude of the motion.  The bottom panel shows the motion of the protein as viewed 
from top (left) and bottom (right).   
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Fig. 7.7.  The structure of STMV. (a) The structure of STMV represented by its capsid, colored by 
geometric positions to illustrate the icosahedral symmetry. (b) A cross section view of the STMV, 
highlighting the capsid and enclosed genetic material (RNA). The RNA, shown as cartoon 
representation in yellow, on which spherical dots represents the positions of atoms P, C2 and C4’. 
These atoms are used to build up the elastic network in ANM. 

7.3.2.   Viruses 

Viral capsids are some of the largest systems to have been studied with ENMs.  
Their large size – on the order of a million atoms – places many viruses beyond 
the reach of MD.  Even NMA of viral ENMs is computationally cumbersome, 
necessitating the use of various techniques to further simplify normal mode 
calculation.  The RTB method was used (Tama & Brooks, 2002; Tama & Brooks 
2005) to investigate swelling of viral capsids,  leading to the observation that 
capsid maturation in several viruses can be largely accounted for with only a few 
non-degenerate (icoasahedrally symmetric) slow modes. The symmetry of viral 
capsids was exploited (Kim et al. 2003, Kim et al. 2004) to construct simplified 
ENMs for studies of capsid maturation, while the maturation of the HK97 
bacteriophage was explored using the GNM (Rader et al. 2005).  The dynamics 
of sufficiently small viruses can thus be analyzed through direct application of an 
ENM without further simplification, as exemplified below.  
 
The satellite tobacco mosaic virus (STMV) is one of the smallest viruses known, 
consisting of 60 identical protein subunits arranged in an icosahedral shell about 
a single-stranded RNA with 1058 nucleotide bases (Figs. 7.7a and 7.7b) (Dodds, 
1998, Day et al. 2001).  Recent studies of STMV include the structural analysis 
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of its RNA, MD simulations of the intact capsid (Freddolino et al. 2006) and 
direct measurements of its elastic properties.  We analyzed the normal modes of 
STMV using the ANM (Doruker et al. 2000; Atilgan et al. 2001). Starting from 
the PDB (Berman et al. 2000) structure 1A34 (Larson et al. 1998), we built an 
elastic network using the atoms Cα on the capsid proteins, and the atoms P, C2 
and C4’ on the RNA nucleotides as the network nodes.  A cutoff distance of 15 Å 
was used to define connections between nodes, and the force constant was set to 
1 N/m (note the conversion factor 1 N/m = 1.44 kcal/mol/ Å2).  
 
Results from ANM analysis of STMV. The group of rotations that preserve 
icosahedral symmetry has finitely many irreducible representations: 1, 3, 4 and 5 
dimensional representations (Tinkam, 1964, Widom et al. 2007).  Since the 
dimensionality of the irreducible representations determines the degeneracy of 
each normal mode, the allowed degeneracies of vibrational frequency are simply 
1 (nondegenerate), 3, 4 and 5. No other degeneracies may occur. Figure 7.8 
shows the eigenvalues calculated using the ANM in the cases of STMV with 
RNA and the STMV protein coat alone.   
 

    

Fig. 7.8.  Dispersion of mode frequencies. The curves display the eigenvalues calculated using              
the ANM for STMV with RNA (empty dots) and STMV protein coat alone (solid spheres). They 
are colored in groups. Each distinctive color represents a type of motion, with certain degeneracy 
(1, 3, 4 or 5). Higher resolution figure can be provided upon request.  
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Fig. 7.9.  Global mode shapes predicted for the intact STMV. Results are based on ANM (a) The 
l = 0 breathing mode, mode 22 in Fig. 7.8. (b) The l = 2 squeezing mode, 5-fold degenerate modes               
1-5. (c) The l = 3 squeezing mode, modes 6-9. (d) The torsional mode (13–17).  All panels are 
colored according to their mobilities from small (blue) to large (red).  

 
The collective eigenmodes can be divided into two distinctive types (Coccia 

et al. 1998).  The first type is torsional modes, in which the deformations have  
no radial component.  An example of this type of motion is modes13-17, shown 
in Fig. 7.9d.  The other type is spheroidal modes (e.g. modes 1-5, Fig. 7.9b),                
in which the eigenvectors contain both tangential and radial components.  Each 
mode can be described by a wave number, l, that corresponds to the degree of the 
spherical harmonic that best aligns with the mode.  Qualitatively, the wave 
number may be thought of as the degree of symmetry of a mode: l = 0 indicates 
spherical symmetry, l = 2 indicates deformation along a single axis, and so on.  
Figures 7.9a–c illustrates the spheroidal modes with wave numbers 0, 2 and 3, 
respectively.  

Figure 7.9a displays a typical l = 0 spheroidal mode, corresponding to            
mode 22 of STMV (capsid + RNA in the mode frequency distribution shown in 
Fig. 7.8.  It is non-degenerate because it preserves icosahedral symmetry. Such 
modes correspond to purely radial motions — shrinking or swelling (breathing) 
of the entire structure.  This type of deformation occurs in response to strong 
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internal pressure, such as that exerted by the genome encapsulation, or external 
pressure, such as osmotic pressure. It is notable that the eigenvalue of this mode 
is higher than other low frequency modes (Fig. 7.8), implying that the capsid 
exhibits a relatively stronger resistance against deformations of this type. 

Figure 7.9b shows the slowest mode with five-fold degeneracy (l = 2), i.e., 
modes 1-5 in Fig. 7.8. The motion induced in these modes can be visualized 
physically as the result of squeezing a sphere radially inwards at the poles, 
allowing it to bulge outwards at the equator, and vice versa. Such a deformation 
occurs when a molecule is probed with an atomic force microscope. Our recent 
calculations (Yang et al. 2008) showed that hollow spheres are quite soft in 
response to this mechanism of deformation (Michel et al. 2006; Kol et al. 2006).  
This is the top ranking (lowest frequency) mode in both STMV and 
STMV+RNA, which indicates that this kind of deformation is highly favorable 
from an energetic point of view.  

The l = 3 mode (Fig. 7.9c) is similar to the l = 2 mode above, but the 
deformation direction is split into three. This mode involves two groups of 
degenerate modes, 6-8 and 9-12.  The torsional mode illustrated in Fig. 7.9d is               
a fivefold degenerate mode with l = 2. This mode can be visualized as the result 
of twisting the upper and lower hemispheres in opposite directions.  
 

Effect of RNA.  There is no difference between the first 21 modes of the STMV 
capsid (alone) and those of the capsid with RNA in so far as the mechanism of 
motion is concerned, but their orders (or relative frequencies) exhibit slight 
changes. The eigenvalues of the capsid with RNA are slightly higher than their 
counterparts for the protein coat only (Fig. 7.8), but this is essentially due to the 
larger number of nodes and higher mass of the capsid with RNA.  The eigenvalue 
of the l = 2 spheroidal squeezing modes (modes 1-5) increases by 8% in the 
presence of the genome, whereas that of the l = 2 torsional twisting modes 
(modes 13-17) increases by only 0.4%. Differences appear after the 21st mode; 
for example, the breathing mode appears earlier in the case of the capsid with 
RNA.  

7.4.   Conclusion 

Elastic network models lead to a unique analytical solution and provide a 
thorough sampling of the energy landscape near the energy minimum.  Advances 
in accurate representation of systems and in validation procedures have 
highlighted coarse-grained approaches as valuable tools for analysis, allowing a 
direct comparison with experimental results on macromolecular dynamics.  
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Based on a simplified harmonic potential, ENMs have been enhanced to account 
for a variety of effects that influence the dynamics of biological molecules. An 
advantage of ENMs is that they usually provide an accurate description of the 
mechanisms of motions, although no absolute time scale and size of motions can 
be predicted.  Another advantage is to simplify our understanding of the complex 
and diverse interactions in biological systems with the help of a simple model, 
and a small number of parameters.  It should be noted, however, that in a strict 
sense they are applicable to the close neighborhood of the native (or equilibrium) 
state. They essentially inform us on the intrinsic dynamic preferences of 
biomolecular systems, which are verified in numerous applications to be 
functionally relevant (Bahar et al. 2007). ENMs also provide us with physical 
insights: The overall topology of the protein plays a major role in the mechanical 
behavior of the protein, implying that proteins related by evolution are expected 
to show similar quantitative behavior, as seen in the case of potassium channels, 
discussed above.  Basic research in biology and biochemistry along with 
statistical mechanical and analytical methods will thus lead to improved 
transferability and predictability of such approaches. 
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